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Introduction

▌Edge computing reduces network stress for operators and improves service 
responsiveness by allocating computation closer to data producers and consumers 

▌Challenges
lHardware is constraint
lHardware is heterogeneous
lNo Cloud-like elasticity features (scale out, scale up, etc.)

▌When deployed, services do not meet their Service Level Objectives (SLOs)

▌We have already introduced Elastic Services that dynamically adapt to the current 
execution context to better comply with their SLOs 
lBut how do services decide when and how to adapt?

▌In this work, we propose Reinforcement Learning (RL) based approach so edge 
services can adapt and achieve their SLOs

Introduction
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Motivation Use Case: The Lost Child Service

Child gets lost Parents give pictures of the 
child to the police

A face recognizer is 
trained

Face recognizer is 
deployed in the city

Overall working

Face 
Detection

Face 
Recognition

Image 
Preprocessing

Online module

Online module

Requirements
• To process at least 1 FPS in order to find child even if it appears briefly in image
• To analyse image with precision as high as possible

Introduction
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Problem

▌The online module must be deployed on the Edge
lSending video from several cameras to the cloud to be analyzed is not feasible

Hardware in the Edge is highly heterogenous

Inputs are highly variable

GPU

SSDHDD

When service is 
deployed, requirements

are not met

Introduction
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Adaptation Knobs

Face 
Detection

Face 
Recognition

algorithm

scale_factor

face_recognizer

Image 
Preprocessing

image_resize

colorization min_neighbours

1080p, 720p, 
640p, 320p

bw, rgb

lbp,
haar_cascade

lbph, fisher_faces

4, 6, 8, 10
1.15, 1.2, 
1.33, 1.5

▌Modifying a parameter affects the service performance in different dimensions
lCommon trade-off: accuracy v. end-to-end latency

▌Optimal values vary depending on:
l Input (image resolution, FPS, image quality, number of faces in image, etc.)

lExecution context (processing node hardware, shared resources status)

lGoals (fastest response, highest accuracy, end to end latency < 1s, precision > 0.8, etc.)

▌Number of alternative behaviors grows exponentially; even for this simple service:

!" # $" = &'$different configurations!

Programming Model
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Programming model

▌Services are broken down into small processing functions à operators
lThese operators are parameterized to change their internal execution during runtime

▌Once operators and their implementations are provided, service topology is 
defined

▌The goal is to achieve and ensure the required QoS continuously, by making 
orchestration decisions adapted to the current input and context

▌We use FogFlow as our edge execution framework

▌FogFlow dynamically orchestrates elastic services over cloud and edges, in order 
to reduce internal bandwidth consumption and offer low latency. It is context-
driven, taking orchestration decisions on different contexts:
lSystem
lData
lUsage

Programming Model
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Dynamic Orchestration

▌In order to generalize our approach over services with different numbers and 
types of requirements, we model the problem as a constrained optimization 
problem

▌SLOs or requirements à constraints
l to process documents with end-to-end latency less or equal than 1s

l to run at a cost of less or equal than $10 per hour

▌Service goal à objective
lPrecision
lAccuracy
lBattery efficiency

Dynamic Orchestration
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Optimization Problem

max
$

%(')
)*+,-./ /0 .1 ' ≤ 31, 5 = 1, … , 9

': is the configuration of adaptation knobs used for all of the operators

O('): represents the objective of the service,, which is determined by the 
configuration of parameters used

.1('): is a constraint to the service (such as latency), also determined by '
31: is a constraint target(e.g., 1s)

N: is the total number of constraints

Dynamic Orchestration
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Steps to define an Elastic Service

1. Objective of Service
Max. precision, min. latency, min. cost

2. Service Requirements and metrics
end-to-end latency must be less than 1 second, related metric: latency
at least 1 frame should be processed per second, related metric: latency

3. Operators and Adaptation knobs
image resolution to be analyzed: [1080p, 720p, 640p, 320p]
classifier to be used: [LBP, Haar Cascade, CNN]

4. Finds best configuration for adaptation knobs through its 
Dynamic Orchestration

Developer

Elastic Service

Requirements for Dynamic Orchestration
● Rapid response: it must adjust the service behavior rapidly to keep up with changes 

during runtime 
● Low overhead: it must not create a considerable overhead for the system

Dynamic Orchestration
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Heuristics based Orchestration

▌Exploits common trade-off: latency v. precision
lDisadvantage: requirements and service performance must exhibit trade-off

▌Simple logic: start with “best performance”, if requirements are not met, reduce 
performance until requirements are met

▌We also include a mechanism for trying upgrading performance if it seems 
possible

Dynamic Orchestration
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Reinforcement Learning 101

▌RL enables an agent to learn in an interactive environment by trial and error

▌RL is often considered to be in between supervised and unsupervised learning

▌It models the problem as a Markov Decision Process (MDP)

l A MDP is a discrete time stochastic decision control process, which consists of finite environment states S, a 

set of possible actions A(s) in each state, a real valued reward function R(s) and a transition model P(s’, s | a)

▌Elements of RL

l Environment: World in which the agent operates

l State: Current situation of the agent

l Reward: Feedback from the environment

l Policy: Method to map agent’s state to actions

Image from: https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html

Dynamic Orchestration
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Reinforcement Learning for Dynamic Orchestration

Service Environment

Action
Adaptation knobs

positive if SLOs are satisfied Reward

negative if any SLO is violated

State
execution context metrics, 

requirements fulfillment

These are the 
characteristics of our 

problem!

Dynamic Orchestration

▌RL is highly adaptable to different environments and goals, and learns ”on the go”
lGood for highly heterogenous contexts
lGood for different services with different requirements

lGood for cases in which no previous information is available
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▌We have implemented and evaluated two configurations that use different 
information

Reinforcement Learning for Dynamic Orchestration

Configuration 1 
Last SLO state (latency), 
last action

Service Environment

Action
Configuration of adaptation knobs to 

be used

Time steps
in each time step a frame

is processed by the full pipeline

Reward

State

Configuration 2 
Last SLO state (latency), current
system status (CPU availability), 

last action

Dynamic Orchestration
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Experimental Evaluation

▌Simulation of Lost Child service (static and elastic) on Raspberry Pi 3B+

▌Service runs in shared environment

▌CPU availability varies in each step with probability p=0.1 between 0.3 and 1

▌Using the dataset Faces94, images with 6, 12, 24, 48, 96 and 192 faces were 
composed

▌Different datasets
lFixed input 
lVariable input
lFull day input
lRandom input

Face 
Detection

Face 
Recognition

Image 
Preprocessing

quick recap!

Experimental Evaluation
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Results Experimental Evaluation
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Results (2)

RL DO 
0,42%

Image 
Processing
99,56%

Low overhead

▌How well does the RL based Dynamic Orchestration perform according to its 
requirements?

▌It reacts quickly to changes, avoiding requirements violations and taking 
advantage of resources when they’re available

▌It needs little processing power/time

Experimental Evaluation
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Takeaways and Future work

▌Edge services need to adapt in order to meet their SLOs

▌Elastic services simplify development of adaptive edge services

▌Dynamic Orchestration achieves better performance than static services

▌RL is an effective approach to orchestrate elastic services
l10-25% higher precision than heuristics
l25% less execution time than heuristics

▌In the future, we want to improve RL based orchestration
lSupport large number of adaptation knobs (and values for each knob)
lBy further testing it with different services and environments
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