
Reinforcement Learning based
Orchestration for Elastic Services

Mauricio Fadel Argerich <mauricio.fadel@neclab.eu>

Bin Cheng

Jonathan Fürst

15-18 April 2019 – Limerick, Ireland

Agenda

1. Introduction

2. Programming model

3. Dynamic Orchestration

4. Experimental Evaluation

5. Takeaways & Future work

3 Reinforcement Learning based Orchestration for Elastic Services

Introduction

▌Edge computing reduces network stress for operators and improves service
responsiveness by allocating computation closer to data producers and consumers

▌Challenges
lHardware is constraint
lHardware is heterogeneous
lNo Cloud-like elasticity features (scale out, scale up, etc.)

▌When deployed, services do not meet their Service Level Objectives (SLOs)

▌We have already introduced Elastic Services that dynamically adapt to the current
execution context to better comply with their SLOs
lBut how do services decide when and how to adapt?

▌In this work, we propose Reinforcement Learning (RL) based approach so edge
services can adapt and achieve their SLOs

Introduction

4 Reinforcement Learning based Orchestration for Elastic Services

Motivation Use Case: The Lost Child Service

Child gets lost Parents give pictures of the
child to the police

A face recognizer is
trained

Face recognizer is
deployed in the city

Overall working

Face
Detection

Face
Recognition

Image
Preprocessing

Online module

Online module

Requirements
• To process at least 1 FPS in order to find child even if it appears briefly in image
• To analyse image with precision as high as possible

Introduction

5 Reinforcement Learning based Orchestration for Elastic Services

Problem

▌The online module must be deployed on the Edge
lSending video from several cameras to the cloud to be analyzed is not feasible

Hardware in the Edge is highly heterogenous

Inputs are highly variable

GPU

SSDHDD

When service is
deployed, requirements

are not met

Introduction

6 Reinforcement Learning based Orchestration for Elastic Services

Adaptation Knobs

Face
Detection

Face
Recognition

algorithm

scale_factor

face_recognizer

Image
Preprocessing

image_resize

colorization min_neighbours

1080p, 720p,
640p, 320p

bw, rgb

lbp,
haar_cascade

lbph, fisher_faces

4, 6, 8, 10
1.15, 1.2,
1.33, 1.5

▌Modifying a parameter affects the service performance in different dimensions
lCommon trade-off: accuracy v. end-to-end latency

▌Optimal values vary depending on:
l Input (image resolution, FPS, image quality, number of faces in image, etc.)

lExecution context (processing node hardware, shared resources status)

lGoals (fastest response, highest accuracy, end to end latency < 1s, precision > 0.8, etc.)

▌Number of alternative behaviors grows exponentially; even for this simple service:

!" # $" = &'$different configurations!

Programming Model

7 Reinforcement Learning based Orchestration for Elastic Services

Programming model

▌Services are broken down into small processing functions à operators
lThese operators are parameterized to change their internal execution during runtime

▌Once operators and their implementations are provided, service topology is
defined

▌The goal is to achieve and ensure the required QoS continuously, by making
orchestration decisions adapted to the current input and context

▌We use FogFlow as our edge execution framework

▌FogFlow dynamically orchestrates elastic services over cloud and edges, in order
to reduce internal bandwidth consumption and offer low latency. It is context-
driven, taking orchestration decisions on different contexts:
lSystem
lData
lUsage

Programming Model

8 Reinforcement Learning based Orchestration for Elastic Services

Dynamic Orchestration

▌In order to generalize our approach over services with different numbers and
types of requirements, we model the problem as a constrained optimization
problem

▌SLOs or requirements à constraints
l to process documents with end-to-end latency less or equal than 1s

l to run at a cost of less or equal than $10 per hour

▌Service goal à objective
lPrecision
lAccuracy
lBattery efficiency

Dynamic Orchestration

9 Reinforcement Learning based Orchestration for Elastic Services

Optimization Problem

max
$

%(')
)*+,-./ /0 .1 ' ≤ 31, 5 = 1, … , 9

': is the configuration of adaptation knobs used for all of the operators

O('): represents the objective of the service,, which is determined by the
configuration of parameters used

.1('): is a constraint to the service (such as latency), also determined by '
31: is a constraint target(e.g., 1s)

N: is the total number of constraints

Dynamic Orchestration

10 Reinforcement Learning based Orchestration for Elastic Services

Steps to define an Elastic Service

1. Objective of Service
Max. precision, min. latency, min. cost

2. Service Requirements and metrics
end-to-end latency must be less than 1 second, related metric: latency
at least 1 frame should be processed per second, related metric: latency

3. Operators and Adaptation knobs
image resolution to be analyzed: [1080p, 720p, 640p, 320p]
classifier to be used: [LBP, Haar Cascade, CNN]

4. Finds best configuration for adaptation knobs through its
Dynamic Orchestration

Developer

Elastic Service

Requirements for Dynamic Orchestration
● Rapid response: it must adjust the service behavior rapidly to keep up with changes

during runtime
● Low overhead: it must not create a considerable overhead for the system

Dynamic Orchestration

11 Reinforcement Learning based Orchestration for Elastic Services

Heuristics based Orchestration

▌Exploits common trade-off: latency v. precision
lDisadvantage: requirements and service performance must exhibit trade-off

▌Simple logic: start with “best performance”, if requirements are not met, reduce
performance until requirements are met

▌We also include a mechanism for trying upgrading performance if it seems
possible

Dynamic Orchestration

12 Reinforcement Learning based Orchestration for Elastic Services

Reinforcement Learning 101

▌RL enables an agent to learn in an interactive environment by trial and error

▌RL is often considered to be in between supervised and unsupervised learning

▌It models the problem as a Markov Decision Process (MDP)

l A MDP is a discrete time stochastic decision control process, which consists of finite environment states S, a

set of possible actions A(s) in each state, a real valued reward function R(s) and a transition model P(s’, s | a)

▌Elements of RL

l Environment: World in which the agent operates

l State: Current situation of the agent

l Reward: Feedback from the environment

l Policy: Method to map agent’s state to actions

Image from: https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html

Dynamic Orchestration

13 Reinforcement Learning based Orchestration for Elastic Services

Reinforcement Learning for Dynamic Orchestration

Service Environment

Action
Adaptation knobs

positive if SLOs are satisfied Reward

negative if any SLO is violated

State
execution context metrics,

requirements fulfillment

These are the
characteristics of our

problem!

Dynamic Orchestration

▌RL is highly adaptable to different environments and goals, and learns ”on the go”
lGood for highly heterogenous contexts
lGood for different services with different requirements

lGood for cases in which no previous information is available

14 Reinforcement Learning based Orchestration for Elastic Services

▌We have implemented and evaluated two configurations that use different
information

Reinforcement Learning for Dynamic Orchestration

Configuration 1
Last SLO state (latency),
last action

Service Environment

Action
Configuration of adaptation knobs to

be used

Time steps
in each time step a frame

is processed by the full pipeline

Reward

State

Configuration 2
Last SLO state (latency), current
system status (CPU availability),

last action

Dynamic Orchestration

15 Reinforcement Learning based Orchestration for Elastic Services

Experimental Evaluation

▌Simulation of Lost Child service (static and elastic) on Raspberry Pi 3B+

▌Service runs in shared environment

▌CPU availability varies in each step with probability p=0.1 between 0.3 and 1

▌Using the dataset Faces94, images with 6, 12, 24, 48, 96 and 192 faces were
composed

▌Different datasets
lFixed input
lVariable input
lFull day input
lRandom input

Face
Detection

Face
Recognition

Image
Preprocessing

quick recap!

Experimental Evaluation

16 Reinforcement Learning based Orchestration for Elastic Services

Results Experimental Evaluation

17 Reinforcement Learning based Orchestration for Elastic Services

Results (2)

RL DO
0,42%

Image
Processing
99,56%

Low overhead

▌How well does the RL based Dynamic Orchestration perform according to its
requirements?

▌It reacts quickly to changes, avoiding requirements violations and taking
advantage of resources when they’re available

▌It needs little processing power/time

Experimental Evaluation

18 Reinforcement Learning based Orchestration for Elastic Services

Takeaways and Future work

▌Edge services need to adapt in order to meet their SLOs

▌Elastic services simplify development of adaptive edge services

▌Dynamic Orchestration achieves better performance than static services

▌RL is an effective approach to orchestrate elastic services
l10-25% higher precision than heuristics
l25% less execution time than heuristics

▌In the future, we want to improve RL based orchestration
lSupport large number of adaptation knobs (and values for each knob)
lBy further testing it with different services and environments

The research leading to these results has
received funding from the European Community's

Horizon 2020 research and innovation programme
under grant agreement nº 779747

Mauricio Fadel Argerich <mauricio.fadel@neclab.eu>

Thank you for your attention!

