News

IBM acquires RedHat, a game-changer for the cloud computing landscape with positive repercussions for Open Source in H2020 BigDataStack Project

IBM’s and Red Hat’s partnership has spanned 20 years, with IBM serving as an early supporter of Linux, collaborating with Red Hat to help develop and grow enterprise-grade Linux and more recently to bring enterprise Kubernetes and hybrid cloud solutions to customers. These innovations have become core technologies within IBM’s $19 billion hybrid cloud business. Between them, IBM and Red Hat have contributed more to the open source community than any other organization.

How to Layout Big Data in IBM Cloud Object Storage for Spark SQL

How to Layout Big Data in IBM Cloud Object Storage for Spark SQL

Are you familiar with storage systems like IBM Cloud Object Storage (COS) or Apache Spark SQL? Dr. Paula Ta-Shma from IBM, gives us some tips & tricks you should know to improve your daily data journey.

BigDataStack and the Data-Storage Challenge

One of the goals of BigDataStack is to facilitate scalable data storage through a distributed storage layer. This would enable storage across different resources, while supporting data migration for application components and re-allocation of data services across the infrastructure.

Bigdata Growth - A quick snapshot on its development

We are at an age where a single jet engine creates up to one terabyte (1,000,000,000,000) of data within a single transatlantic flight. Each one of us is like one of those engines, giving off ‘data exhaust’ as we operate in our daily lives. But these aren’t just inconsequential. In fact, big data is a worldwide market with more than estimated $203 billion worth of value by 2020.

BigDataStack architecture paper for IEEE BigData Congress 2018 has been accepted!

We are happy and proud to announce that our paper entitled "BigDataStack: A holistic data-driven stack for big data applications and operations", submitted to the IEEE BigData Congress 2018, affiliated with the 2018 IEEE World Congress on Services (IEEE SERVICES 2018), has been accepted for publication.

BigDataStack Use Cases: Intelligent multi-channel banking

datacentric paradigm helps create a 360° view of the customer and provide personalized services.

The diffusion of online banking, social media, banking operations in branches and ATMs create a multi-channel scenario. BigDataStack allows this through facilitating intelligent banking powered by data analytics.

BigDataStack Use Cases: Real Time Ship Management

A vessel has to complete its route within a  time-frame. When a part of the main engine fails unexpectedly, the ship risks staying off-hire. This can be very damaging to a shipping company, as chartering revenues decrease, while replacing a spare part immediately increases cost. Thus, identification of potential failure allows timely ordering, or even replacement of spare parts before failure.

BigDataStack use cases: the connected consumer

Relevant data for retailers has proved to be coming from five dimensions: customer, product, time, geo-location and channel.

BigDataStack Paradigm Shift

BigDataStack will deliver a complete pioneering stack, based on a frontrunner infrastructure management system that drives decisions according to data aspects, thus being fully scalable, runtime adaptable and high-performant to address the emerging needs of big data operations and data-intensive applications.

BigDataStack will provide ground for the European Open Source Initiative

BigDataStack will provide the ground for the realization of an initiative to provide the expertise and know-how to the EU research community for creating valuable open source artefacts and maximizing their impact: the European Open Source Initiative